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The evaluation of flexible mechanism involving multi-body dynamics with high nonlinearity and 
transients urgently requires an efficient evaluation method to enhance its reliability and safety. In this 
work, an enhanced network learning method (ENLM) is proposed to improve the modeling precision and 
simulation efficiency in flexible mechanism reliability evaluation, by introducing generalized regression 
neural network (GRNN) and multi-population genetic algorithm (MPGA) into extremum response surface 
method (ERSM). In the ENLM modeling, the ERSM is adopted to reasonably handle transients (time-
varying) problem in motion reliability analysis by considering one extreme value in whole response 
process; the GRNN is applied to address high-nonlinearity in surrogate modeling; the MPGA is utilized 
to find the optimal model parameters in ENLM modeling. In respect of the developed ENLM, the motion 
reliability of two-link flexible robot manipulator (TFRM) was evaluated, with regard to the related input 
random parameters to material density, elastic modulus, section sizes, and deformations of components. 
In term of this study, it is illustrated that (i) the comprehensive reliability of flexible robot manipulator 
is 0.951 when the allowable deformation is 1.8×10−2 m; (ii) the maximum deformations of member-1 
and member-2 obey normal distributions with the means of 1.45×10−2 m and 1.69×10−2 m as well 
as the standard variances of 6.77×10−4 m and 4.08×10−4 m, respectively. The comparison of methods 
demonstrates that the ENLM improves the modeling precision by 3.29% and reduces the simulation 
efficiency by 1.19 s under 10 000 simulations, and the strengths of the ENLM with high modeling 
precision and high simulation efficiency become more obvious with the increase of simulations. The 
efforts of this study provide a learning-based reliability analysis way (i.e., ENLM) for the motion reliability 
design optimization of flexible mechanism and enrich mechanical reliability theory.

© 2020 Elsevier Masson SAS. All rights reserved.
1. Introduction

Flexible mechanism is one of important parts in mechanical 
system in spacecraft, aircraft, robotics, and so forth [1]. The use 
of flexible mechanism is to transmit force loads and change the 
movement, so that it severely influences the safety and robust-
ness of mechanical system [2]. With the advances of aerospace 
and robot technologies, the investigation on flexible mechanism 
attracts a lot of attention with the emphasis on the control strat-
egy [2] and the modeling and solution of dynamic equation [3–6]. 
Therefore, it is necessary to evaluate the reliability of flexible 
mechanism to ensure the stable operation of mechanical system.
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Numerous investigations on reliability analysis in many fields 
lead to the rapid development of reliability analysis approaches 
[7–10]. Reliability methods may be decomposed into direction 
method and surrogate model method. The direction method is 
based on the simulation and analysis on the true model of study 
objects based on Monte Carlo (MC) method. Usually, the true 
model is complex finite model (FE), and endures complex bound-
ary conditions and multi-physical loads, so that the computation of 
FE-based reliability analysis is too large-scale to be implemented 
in general computing platform. As an alternative approach, surro-
gate model method (also called response surface method, RSM), 
an important reliability analysis approach, is being widely applied 
and rapidly developed, which can largely improve the computa-
tional efficiency of reliability analysis relative to the direct simu-
lation method. Fei et al. proposed decomposed-coordinated sur-
rogate modeling strategy for compound function approximation 
and a turbine blisk reliability evaluation [11]. Zhang et al. studied 
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the fuzzy multi-SVR (support vector machine of regression) learn-
ing method for the reliability-based design optimization of turbine 
blades [12]. Lu et al. developed improved Kriging with extremum 
response surface method for structural dynamic reliability and sen-
sitivity analyses [13]. Li et al. employed support vector machine in 
structural reliability analysis [14]; Jiang et al. studied active lean-
ing Kriging method for time-dependent reliability analysis [15]; 
Xiong et al. presented a double weighted stochastic RSM for re-
liability analysis [16]; Gavin et al. gave the RSM-based high-order 
limit state functions for reliability analysis [17]; Bai et al. gave a 
response surface-based structural reliability analysis method with 
the consideration of non-probability convex model [18]; Dai et al. 
applied artificial neural network (ANN) with high accuracy and 
nonlinear mapping capability, to the regression analysis of com-
plex structure limit state function to improve the computational 
accuracy of reliability [19]. Liao et al. discussed multiaxial fatigue 
life prediction framework of compressor discs considering notch 
effects [20]. Although the advanced surrogate model approaches 
hold acceptable accuracy, uses of them only focus on the reliability 
analysis of structures rather than flexible mechanism.

Compared to the studied structures, the main function of mech-
anisms is to transmit and change the movement of components 
in mechanism system with time, by the forms of displacement 
and deformation [2,3]. Due to the complexity of relative motion, 
the components and mechanism system are so flexible that the 
design and analysis of flexible mechanism with kinetic equations 
involve high order differential equation set [21]. Obviously, the 
flexible mechanism analysis involves nonlinear calculation, time 
dependence (transients) and interaction among many components. 
In this case, it is inevitable that the reliability analysis of flexible 
mechanism involves large-scale calculation and strong coupling. 
When the surrogate model methods effectively used in structural 
reliability analysis are directly applied to the reliability evaluation 
of flexible mechanisms, it is difficult to acquire acceptable analyt-
ical efficiency and accuracy. To overcome the issues, Song et al. 
developed dynamic neural network method based on extremum 
response surface method to improve the probabilistic analysis of 
flexible mechanism in analytical precision [22]; Gao et al. adopted 
an adaptive neural network to control the vibration of a flexible 
aircraft wing system [23]; Zhang et al. investigated the reliabil-
ity evaluation and topology optimization of compliant mechanism 
by using level set method and the first order reliability method 
[24]; Ouyang et al. studied the pole assignment for control of 
flexible link mechanisms using FE model and surrogate modeling 
approach [25]. To improve the computational efficiency, Zhang et 
al. developed extremum RSM (ERSM)-based quadratic polynomi-
als for the reliability analysis of flexible manipulator by combining 
flexible multi-body dynamics with modal comprehensive method 
and modal truncation technique [26]. And the ERSM was intro-
duced into machine learning approaches (such as ANN, SVM, Krig-
ing model, and so forth) to enhance the probabilistic design and 
optimization of complex structures and revealed the ability of the 
method in handling the transients [27–31]. Yang et al. proposed 
back propagation-ANN (BP-ANN) for the strength reliability analy-
sis of flexible mechanism [32,33]. These works verified the ERSM 
and BP-ANN model which can improve the simulation efficiency 
and accuracy in flexible mechanism reliability analysis to some 
extent. However, these methods cannot still satisfy the motion 
reliability analysis of flexible mechanism in engineering. This is de-
termined by the three aspects, i.e., (i) flexible mechanism analysis 
involves time-varying (transient) characteristics. In the stage of ex-
tracting samples, there is not an effective way to reasonably handle 
the transient features and seriously influences both simulation ef-
ficiency and surrogate modeling accuracy; (ii) in fact, the reliability 
analysis of flexible mechanism has higher nonlinear feature, which 
cannot be perfectly addressed by these methods, because these 
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models hardly approximate to high-nonlinear flexible mechanism 
analysis; (iii) in surrogate modeling, the used training algorithms 
is based on low dimensional polynomials and usually involves the 
problem of local optimization and nonconvergence in model pa-
rameter optimization process. Therefore, it is hard to ensure the 
model parameters (i.e., weights and thresholds) to be optimal that 
reduce the effectiveness of the established surrogate model.

To conquer the transients of dynamic structural reliability anal-
ysis, the ERSM was developed and verified to be resultful [26,29], 
because the ERSM only considers the global extreme value of out-
put response in each simulation process rather than its local ex-
tremum values, and is promising to ensure the precision of sam-
ples extracted and improve the efficiency of simulation by only 
focusing on the extreme value. Therefore, ERSM is adopted to ad-
dress the transients of flexible mechanism analysis in sample ex-
traction with the simulation of kinetic equations. With the rapid 
development of neural network technology, generalized regression 
neural network (GRNN) was proposed [34]. The GRNN skillfully ad-
dress the nonlinear problem by a strong nonlinear mapping from 
high-dimensional space to low dimensional space. Meanwhile, the 
GRNN has been demonstrated to be high computational precision 
and efficiency in structural design optimization [35–39]. The emer-
gence of the GRNN offers the useful insight for the solution of high 
nonlinearity in flexible mechanism reliability analysis. In seeking 
for the optimal model parameters, genetic algorithm (GA) was of-
ten employed in structural design in the past [13,39]. However, the 
GA holds the premature problem in parameters optimization [40], 
due to the dismatch or discordant of many processes such as fit-
ness value, crossover and mutation probabilities, population size, 
termination criterion, and so forth. Recently, multi-population GA 
(MPGA) was proposed to search the optimal values of model pa-
rameters [41], and was validated that the MPGA holds flexible and 
adaptive design space exploration and avoid the influence of the 
plateau-like function profile of MLE. Besides, the MPGA uses mul-
tiple populations with different control parameters for optimiza-
tion iterations, and thus breaks the premature problem of single 
population evolution for the traditional GA [39,40]. Substantially, 
the MPGA originates from GA and inherits natural selection and 
genetic characteristics. The use of MPGA in flexible mechanism re-
liability analysis is the solution of the third issue.

The objective of this paper is to propose an enhanced network 
learning method (ENLM) by integrating the strengths of ERSM, 
GRNN and MPGA, to improve the modeling accuracy and simu-
lation efficiency of flexible mechanism motion reliability analy-
sis caused by transients, high-nonlinearity and hyperparameters. 
Herein, the ERSM is applied to reasonably handle the transients 
(time-varying) of motion reliability analysis by considering one ex-
treme value rather than the whole response process. The GRNN is 
employed to address the high-nonlinearity in the surrogate mod-
eling of flexible mechanism; the MPGA is adopted to find the op-
timal model parameters in the ENLM modeling. The strengths of 
the three methods collectively guarantee the modeling accuracy 
and simulation efficiency in flexible mechanism motion reliabil-
ity analysis. Based on the proposed ENLM, the reliability analysis 
of two-link flexible mechanism (TFRM) was implemented with re-
gard to random variables and mechanism deformation. In respect 
of the comparison of methods with MC method, ERSM and GRNN, 
the presented ENLM is validated with high modeling precision and 
good simulation efficiency.

The remainder of this paper is organized as follows. Section 2
discusses the developed ENLM, involving ERSM, ENLM and MPGA. 
The basic thought of flexible mechanism motion reliability analysis 
with the ENLM and MPGA is constructed in Section 3. The motion 
reliability analysis of TFRM is applied to validate the modeling pre-
cision and simulation efficiency of the proposed ENLM in Section 4. 
Section 5 gives the conclusions summarized in this study.
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2. Enhanced network learning method

2.1. Basic thought of extremum response surface method

In dynamic reliability analysis, the output response is vary-
ing with time and work. The traditional approach of handling the 
transient response is to establish multiple analytical models at dif-
ferent time points in a time domain [0, T ]. It is undoubtedly that 
this way largely increases the complexity and time cost in simu-
lations. How to effectively process the transients is one key issue 
in dynamic reliability analysis with high computational efficiency. 
To address this issue, the ERSM was developed [13]. The ERSM 
only considers one extremum (maximum value or minimal value) 
of output response process instead of the whole process in a time 
domain, so that the ERSM can reduce computational burden in dy-
namic reliability analysis, relative to the traditional method [13,26]. 
In this paper, the ERSM is adopted to handle the transient problem 
of the motion reliability evaluation of flexible mechanism.

Assuming X and ye are input variables set (a vector) and an ex-
tremum output response, the ERSM model ye(X ) can be expressed 
by

ye (X) =
{

y( j)
e X( j)

}m

j=1
(1)

in which m is the total number of samples; X ( j) stands for the jth 
set of input samples; y( j)

e indicates the extreme value of output 
response in time domain which is correlated with the jth set of 
input samples X ( j).

In Eq. (1), we can find that the ERSM is only a thought or 
strategy. The ERSM model has been derived on basis of quadric 
polynomials in the previous works [26,42]. These models were 
usually inefficient and inaccurate because it is difficult for quadric 
polynomials and least square method to accurately reflect and de-
scribe the high-nonlinearity between numerous input parameters 
and output response in flexible mechanism analysis. In this case, 
it is necessary to develop an efficient model as the basis model of 
the ERSM to make up with the weakness of quadric polynomials 
and least square method in high-nonlinear notion reliability evalu-
ation of flexible mechanism.

2.2. Enhanced network learning method

Generalized regression neural network (GRNN) has strong non-
linear mapping capacity from low dimensional space into high-
dimensional space [34]. By the mapping relationship, the high-
nonlinear relationship problem can be resolved by solving the low-
nonlinear relationship problem in high-dimensional space. There-
fore, it is promising for GRNN to skillfully address the high-
nonlinear problem in the motion reliability analysis of flexible 
mechanism. However, the transients of the motion reliability anal-
ysis of flexible mechanism cannot be processed yet, by the GRNN. 
To address this issue, enhance network learning method (ENLM) is 
developed by the GRNN as the basis model of ERSM, which ab-
sorbing both the nonlinear processing abilities of the GRNN and 
the transient processing ability of the ERSM. Obviously, the ENLM 
is promising to improve analytical precision and efficiency in the 
motion reliability analysis of flexible mechanism. In light of the 
features of GRNN, the ENLM is a feedforward network model with 
the theory of nonlinear regression, which comprises input layer, 
hidden layer and output layer. The schematic diagram of ENLM 
model is shown in Fig. 1.

In input layer, the input and output matrixes correlated with 
training samples, X and T , are
3

Note: X—input samples matrix; T —output samples matrix; Q × R—the dimen-
sions of matrix LW 1.1 which is the weighted matrix in hide layer, where Q
and R are the number of training samples and input parameters, respectively; 
||dist||—Euclidean distance function; b—the threshold of Q neural cells in hidden 
layer; n1—the network vector of hide layer; �—transfer (Gauss) function; a1—the 
output of neuro cell; S × Q —the dimensions of matrix LW 2.1 which is connec-
tion threshold value between hide layer and output layer, where S is the number 
of output parameters; nprod—the weight function of output layer; n2–the net-
work vector of output layer; − / —the purelin transfer function of output layer; 
y = a2—the outputs of neuro cell in output layer.

Fig. 1. Schematic diagram of enhanced network learning method model.

X =

⎡
⎢⎢⎣

x11 x12 · · · x1Q

x21 x22 · · · x2Q

· · · · · · · · · · · ·
xR1 xR2 · · · xRQ

⎤
⎥⎥⎦

T =

⎡
⎢⎢⎣

t11 t12 · · · t1Q

t21 t22 · · · t2Q

· · · · · · · · · · · ·
tS1 tS2 · · · tSQ

⎤
⎥⎥⎦

(2)

in which xji ( j = 1, 2, . . . , R; i = 1, 2, . . . , Q ) indicates the sample 
value of jth input parameter in ith training samples; tji denotes 
jth output sample correlated with ith training samples.

In hidden layer, the number of neurons was equal to the num-
ber of training samples. Weight function can be expressed by Eu-
clidean distance function. Thus, the weight matrix in implicit layer 
is demoted by

LW 1,1 = X T (3)

The thresholds b of Q neural cells in hidden layer are

b = [
b1,b2, · · ·bQ

]T (4)

in which b1 = b2 = · · · = bQ = 0.8326/σ where σ illustrates the 
smooth factor of Gauss function.

Gaussian radial basis function is usually adopted as the transfer 
function of hidden layer. In hidden layer, the number of neurons 
Q and training samples is the same, and one training sample has 
a neuron. Based on the values of weight matrix and thresholds, the 
output a j

i of ith hidden layer neuron is

a j
i = exp

(
−0.8326

∥∥LW 1,i − x j
∥∥2

σ

)
(5)

in which LW 1,i=[xh1, xh2, . . . , xhR]T subject to h = 1, 2, . . . , Q in-
dicates the vector of ith implicit layer in LW 1,1; x j=[x j1, x j2, . . . , 
xjR]T is jth training samples vector. a j =

[
a j

1, · · · ,a j
i , · · ·a j

Q

]
is Q

nerve cells vector for jth input samples.
Regarding the LW 2,1 as the output matrix of training samples 

set, i.e.,

LW 2,1 = T (6)

and the third layer of GRNN as the output layer, in respect of (5)
and (6), the vector n j is
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Fig. 2. The structure chart of multi-population genetic algorithm (MPGA).
n j = LW 2,1
[
a j

]T

∑Q
i=1 a j

i

(7)

Regarding the line transfer function y j=purelin(n j), the GRNN 
model subject to the response of jth training samples is

y j = purelin
(

n j
)

= LW 2,1
[
a j

]T

∑Q
i=1 a j

i

(8)

With regard to the extremum thought of ERSM in Eq. (1), the 
model of ENLM can be established as

y j
max = max

{
LW 2,1

[
a j

]T

∑Q
i=1 a j

i

}
(9)

As shown in the above analysis, the weights (LW 1,2 and 
LW 2,1) and thresholds (b) directly determine the effectiveness and 
feasibility of the established ENLM model in Eq. (9). These hyper-
parameters in ENLM model are denoted by θ=[LW 1,2, LW 2,1, b]. 
Thus, the modeling process of the ENLM can be actually trans-
formed into searching for the optimized values of the hyperpa-
rameters θ=[LW 1,2, LW 2,1, b]. In the traditional approach on the 
optimization of the hyperparameters is least square method [43]. 
When the least square approach is applied to find the hyperpa-
rameters θ of ENLM model, numerous iterations are required for 
the large-scale parameters and high-nonlinear problems, and the 
results also easy immerses in local optimum. Therefore, the find 
of the optimal parameters based on the least square approach 
exists local optimum problem and costs too much time. It is ur-
gent to find an efficient technique to optimize the hyperparameters 
θ=[LW 1,2, LW 2,1, b] as ENLM modeling.

2.3. Intelligent operator design of MPGA

The hyperparameters θ is the key factor of affecting the mod-
eling accuracy of ENLM. To overcome the weakness of the least 
square method in search for the model hyperparameters θ , ge-
netic algorithm (GA) was applied to find the optimal values of 
4

hyperparameter θ , and was demonstrated to hold strong robust-
ness and global search ability [39,40]. However, we find that the 
GA exists premature problem due to fitness value, crossover and 
mutation probabilities, population size, termination criterion and 
so forth [41]. To address the above issue, we attempt to adopt the 
MPGA to search the optimal values of hyperparameters θ . Rela-
tive to the GA, the MPGA as an intelligent operator holds flexible 
and adaptive design space exploration, and avoid the influence of 
the plateau-like function profile of least square method. Besides, 
the MPGA uses multiple populations with different control param-
eters for optimization iterations which can breaks the limitation 
of single population evolution of GA in premature problem [42]. 
Substantially, the MPGA originates from GA and inherits natural 
selection and genetic characteristics. The optimal solution of objec-
tive function can be gained via successive iterations with selection, 
crossover and mutation. The structure chart of MPGA is shown in 
Fig. 2.

As shown in Fig. 2, we first create N initial populations and gain 
excellent populations with multi-population coevolution by selec-
tion operator with roulette method, crossover operator with pc,l , 
and mutation with pm,l , in which pc,l and pm,l (l = 1, 2, . . . , N) 
are the crossover and mutation probabilities of the lth population. 
Then, we obtain elite population which is structured with the op-
timal individual in each excellent population selected by artificial 
selection operator. Therein, the MPGA gives consideration to global 
search and local search, by different control parameters (crossover 
probability pc,l and mutation probability pm,l). Immigrant operators 
play an important role in this algorithm, which establish a bridge 
for information exchange among multiple populations. The elite 
population cannot execute the operators of selection, crossover and 
mutation, to avoid the destruction and loss of the optimal individ-
uals in the evolution process, and is also the basis of the optimal 
termination. Besides, we select the minimum preserving genera-
tions for the optimal individual as the terminal criterion in this 
paper. Moreover, an optimal problem is resolved by minimizing 
an objective function typically. Accordingly, when an optimization 
problem with a maximization objective function is given, we need 
to convert the function into a minimization of the corresponding 
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Fig. 3. Motion reliability analysis procedure of flexible mechanism with ENLM and MPGA.
function, namely the negative value of the objective function, to 
implement the optimization.

Based on the above principle, obviously, the MPGA as an in-
telligent operator does not only hold flexible and adaptive design 
space exploration and avoid the influence of the plateau-like func-
tion profile of least square method, but also can break the limi-
tation of single population evolution of GA in premature problem 
by adopting multiple populations with different control parameters 
for optimization iterations. Therefore, the MPGA has the potential 
to find the optimal parameters θ in the ENLM modeling, so that 
the ENLM is accurately modeled for the reliability analysis of flex-
ible mechanism in this paper.

3. Reliability analysis method with the ENLM for flexible 
mechanism

When y∗ indicates the allowable values of flexible mechanism 
motion (deformation or displacement), in respect of Eq. (9) the 
limit state function of flexible mechanism motion can be expressed 
by

Z = y∗ − yi
max (10)

here Z > 0 indicates that the mechanism is safe, and vice versa.
When the random input variables impacting on the motion are 

mutually independent and obey normal distributions, the output 
response of the flexible mechanism analysis distributes normally 
[28]. Hence the reliability degree Pr can be computed by

Pr = �

(
μZ√

)
≈ Nr (11)
D Z Ntotal

5

where μZ and D Z are the mean and variance of the limit state 
function Z of flexible mechanism motion, respectively; Nr and 
N total indicate the number of samples in safety domain and the 
number of total samples tested, respectively.

In term of the proposed ENLM with MPGA, the procedure of 
the motion reliability analysis of flexible mechanism is drawn in 
Fig. 3.

As illustrated in Fig. 3, the procedure of the motion reliability 
evaluation of flexible mechanism with ENLM and MPGA involves 
four parts, i.e., samples extraction, ENLM modeling, intelligent op-
erator design and reliability analysis. The samples extraction is to 
collect enough and handful of samples by LHS technique to train 
the ENLM model. The objective of the ENLM modeling to gain 
efficient ENLM models by applying the MPGA to find the opti-
mal hyperparameters θ , for the reliability evaluation of flexible 
mechanism. The intelligent operator design is to search the opti-
mal hyperparameters θ in ENLM model, comprising the connection 
weights (LW 1,2 and LW 2,1) and threshold values b (or optimal 
smooth factors σ ) among input layer, hidden layer and output 
layer. The aim of reliability analysis is to assess the performance 
and reliability of flexible mechanism under operation and obtain 
its motion reliability degree. The basic process of the motion re-
liability analysis of flexible mechanism with the developed ENLM 
and MPGA is summarized as follows:

Step 1: Build the kinetic motion equations of flexible mecha-
nism in light of multi-body dynamics principle [3].

Step 2: Set boundary conditions in view of the numerical fea-
tures of random inputs, perform the deterministic analysis based 
on the kinetic motion equations, and then determine the design 
point with the minimum displacement/deformation with regard to 
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the extremum thought of ERSM, for the motion reliability estima-
tion of flexible mechanism.

Step 3: Obtain a handful of input samples by adopting Latin hy-
percube sampling (LHS) method [44] and the extreme values of 
flexible mechanism motion, to structure the set of samples includ-
ing the set of training samples and the set of testing samples.

Step 4: Train the ENLM model based on the acquired samples, 
by using the MPGA method [45] to determine the hyperparameters 
θ of ENLM model comprising the connection weights (LW 1,2 and 
LW 2,1) and threshold values b(or optimal smooth factors σ ).

Step 5: Structure the limit state function of flexible mechanism 
reliability analysis based on the built ENLM model, referencing the 
allowable deformation of flexible mechanism.

Step 6: Verify the precision of ENLM model by the testing sam-
ples by comparing with the true value computed by the kinetic 
(motion) equation of flexible mechanism. If satisfied, implement
Step 7; conversely, return to Step 4.

Step 7: Perform the motion reliability analysis of flexible mech-
anism by extracting enough simulations with the MC method to 
determine reliability degree in line with the Eq. (11).

4. The motion reliability analysis of flexible mechanism

4.1. Problem description

As one of typical flexible mechanisms, two-link flexible robot 
manipulator (TFRM, short for) is selected as the object of study on 
the motion reliability analysis of flexible mechanism, to validate 
the proposed ENLM. The simplified model of TFRM is shown in 
Fig. 4.

In the TFRM, the members of the manipulator are a homoge-
neous Euler beam. Mass loads enforce at the joint between com-
ponent 1 (denoted by member-1) and component 2 (denoted by 
member-2). The end of arm is assumed to be concentrated masses 
without the consideration of rotational inertia and damping of ro-
tor motor. For the two manipulators, the lengths are l1 and l2, 
the masses are m1 and m2, and the driving torques are τ 1(t) and 
τ 2(t), respectively. To simulate the motion conditions of the two 
manipulators (members), the local coordinate systems x1-o-y1 and 
x2-o1-y2) are built for member-1 and member-2 in Fig. 4, respec-
tively. y1 and y2 stand for the elastic deformations of member-1 
and member-2, respectively. t is the movement time. The move-
ments of two moving local coordinates are described by using the 
azimuth angles θ1(t) and θ2(t).

Based on the integrated mode method [26], the elastic defor-
mations of the two members in the corresponding local coordinate 
systems are analyzed. The shape functions φ1 for number-1 and φ2

for number-2 is expressed by⎧⎨
⎩

φ1 (x) = sin
(
πx

l

)
φ2 (x) = sin

(
2πx

l

) (12)

The elastic deformations of the two components vary with time. 
Thus, the elastic deformations y1(t, x1) and y2(t, x2) for member-1 
and member-2 on y direction are computed respectively by{

y1 (t, x1) = ∑n
i=1 gi (t)φi (x1)

y2 (t, x2) = ∑n
i=1 ui (t)φi (x2)

(13)

The generalized coordinate q(t) is gained as

q(t) = [q1,q2,q3,q4,q5,q6]T

= [θ (t) , g (t) , g (t) , θ (t) , u (t) , u (t)]T (14)

1 1 2 2 1 2

6

Fig. 4. Schematic diagram of two-link flexible robot manipulator.

Table 1
Basic parameters of member-1 and member-2.

Parameters Mass M , kg Length L, m Drive torque τ , N·m
Member-1 5.5 0.75 215sin3(2π t)−62
Member-2 7.5 0.75 75sin3(2π t)+15

where gi (t) (i = 1, 2) is the ith elastic coordinate of member-1; 
ui (t) the ith elastic coordinate of member-2.

According to the Lagrange equations, the kinetic equation of the 
TFRM is expressed by

Q k = Mq̈ + Ṁq̇ − ∂

∂q

(
1

2
q̇T Mq̇

)
+ K q + ∂U g

∂q
(15)

where U g is the gravitational potential energy of the system; M
denotes the mass matrix; K indicates the stiffness matrix; Q k(t) 
expresses the total force corresponding to the moment of rotation 
calculated by the virtual work method [46,47].

The failure modes of the TFRM involve deformation failure and 
strength failure. Generally, the dynamic strength of TFRM is not 
easy to fail. Therefore, the main failure mode of the TFRM is defor-
mation failure [26]. In this paper, we focus on TFRM deformation 
to investigate the motion reliability analysis of flexible mechanism.

4.2. Variables selection

In respect of the motion of the TFRM, mass M , length L and 
driving torque τ are considered as the basic parameters as shown 
in Table 1. The density ρ , elastic modulus E and section size h and 
b for the two of manipulators TFRM are regarded as the random 
parameters of the motion reliability analysis of TFRM which are 
shown in Table 2, in which the variables are assumed to follow 
normal distributions and to be independent mutually.

4.3. ENLM modeling

In respect of the distribution feature of input random variables 
in Table 2 and the LHS technology [44], 150 groups of samples are 
extracted for input variables. Then, based on the collected samples 
and the kinetic equations of TFRM in Eq. (15), the output responses 
(maximum deformations) of member-1 and member-2 are calcu-
lated as the samples together with the acquired input samples. 
From the pool of samples, 120 groups of samples are regarded 
as training samples for the ENLM modeling, and the remain 30 
groups of samples are token as the test samples to evaluate the 
built ENLM model. It should be noted that all the samples are nor-
malized before used. To determine the number of neurons (i.e., 
nodes), we mark network hidden layer neuron by ki = 2 ∼9 (i = 1, 
2), for the two members of mechanism system. In this case, the 
number of hidden layers n is computed by

n = √
ni + no + a (16)
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Table 2
Random parameters of member-1 and member-2.

Variables Density ρ , kg·m−3 Modulus of elasticity E , Pa Member-1 Member-2

h1, m b1, m h2, m b2, m

Mean 2067 4.0875×109 0.06 0.015 0.04 0.01
Standard deviation 10 2.0438×108 0.04 0.01 0.0267 0.0067

Table 3
Network training error with different hidden neuron number.

Neuron number 2 3 4 5 6 7 8

Network-1 error 0.12 0.10 0.13 0.13 0.12 0.20 0.22
Network-2 error 0.17 0.16 0.16 0.17 0.19 0.18 0.20

Fig. 5. Optimal fitness value curves.
in which ni is the number of input nodes; no denotes the number 
of output nodes; a expresses the arbitrary constant [19,20]. For 
the different number of neurons, the network training errors are 
computed as listed in Table 3.

In line with the comparison of the network training error in 
Table 3, the network training error is minimal as the number of 
hidden layer nodes (k1 = k2 = 3) is selected for the ENLM model-
ing. Hence, in light of the number of input variables (4), the num-
ber of hidden layer nodes (3) and the number of output response 
(1, only consider one failure mode (deformation)), we select the 4-
3-1 three-layer network structure as the general ENLM model. In 
this model, the transfer functions from input layer to hidden layer 
and hidden layer to output layer choose ‘tansig’ and ‘purelin’, re-
spectively. When particle dimension v = 19 and particle number 
N = 40, by 100 iterations the optimal adaptive value curves in the 
two transfer functions (‘tansig’ and ‘purelin’) are shown in Fig. 5.

As illustrated in Fig. 5, with the increase of evolution the adap-
tive values of member-1 and member-2 reach to the stability with 
0.0399 m and 0.0712 m, respectively, after 20 evolutions and 80 
evolutions (or iterations). The optimal adaptive values are 0.0399 
m and 0.0712 m for member-1 and member-2, respectively, in 
respect of the two transfer functions (‘tansig’ and ‘purelin’). Re-
specting the initial weights and threshold values given arbitrarily 
and 120 groups of training samples, the ENLM model is trained to 
compute the hyperparameters θ1 and θ2 (i.e., weight and thresh-
old levels) for the two members, which are shown in Eq. (17) and 
Eq. (18).

Member-1:

θ1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

LW 1
1,1 =

⎡
⎢⎢⎣

0.3189 1.3753 · · · 0.0442 −1.5461
0.1539 0.5896 · · · 0.1539 0.6162
1.7788 1.0573 · · · 3.6510 0.2696
2.1675 −0.4763 · · · −3.2551 1.5656

⎤
⎥⎥⎦

1×120

LW 1
2,1 = [−1.31590.5464 · · ·1.0812 − 0.8796]1×120

b1 = [−0.36970.8757 · · ·0.01170.5153]
1×120

7

Fig. 6. Test results of the built ENLM model with 30 samples.

(17)

Member-2:

θ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

LW 2
1,1 =

⎡
⎢⎢⎣

−2.2581 −2.2921 · · · 0.8942 −2.9423
0.1191 0.3811 · · · 0.9815 −1.5894

−0.3882 2.3953 · · · 0.9412 0.2033
−0.0081 −1.6267 · · · 0.6289 0.0782

⎤
⎥⎥⎦

1×120

LW 2
2,1 = [2.94631.9262 · · · − 0.3262 − 0.5941]1×120

b2 = [0.9115 − 0.4468 · · · − 0.2628 − 0.3359]1×120

(18)

By inputting the values of the parameters into Eq. (9), the ENLM 
model was built. To support the validity of the established ENLM 
model, the 30 groups of test samples are used to test the estab-
lished ENLM model of member-1. The prediction results are dis-
played in Fig. 6.

As seen in Fig. 6, in respect the 30 test samples, the predicted 
data with the established ENLM model are almost consistent with 
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Fig. 7. Maximum deformation of midpoint of two members.

Fig. 8. Maximum deformation distribution of two members.

Fig. 9. Deformation cumulative curves.
the true sample data, because only there are very small errors for 
each test sample. The small error indicates the high prediction pre-
cision of the developed ENLM as well as the validity and feasibility 
of ENLM based on the samples of flexible mechanism (deforma-
tion). Therefore, the built ENLM model can be applied to perform 
the motion reliability analysis of TFRM in coming section.

4.4. Motion reliability analysis of flexible mechanism

By using the MC method and LHS technology, the built ENLM 
model is simulated 1 000 times, in respect of the distributions of 
random variable s in Table 2. The deformation curve, deformation 
distribution and deformation cumulative function of two members 
are gained in Figs. 7–9. Assuming that the allowable deformation is 
1.8×10−2 m, the results of reliability analysis are listed in Table 4.

As shown in Fig. 7–Fig. 9, the maximum dynamical deforma-
tion values of two members are evenly distributed around the 
8

mean values, and approximately obey a normal distribution with 
the mean values 1.45×10−2 m and 1.69×10−2 m and the standard 
deviations 6.77×10−4 m and 4.08×10−4 m, respectively.

As revealed in Table 4, the reliability degrees for member-1 and 
member-2 are 1 and 0.951, respectively, as the allowable deforma-
tion is 1.8×10−2 m. The TFRM is a continuous system. The system 
strength reliability is equal to the product of the reliability de-
grees of members [1]. Thus, the reliability degree of TFRM system 
is P y = P y1·P y2=0.951. Through 1 000 simulations on the BP-ANN 
models for two members, the computational time of two members 
is 3.102 s and 3.127 s respectively, which involve both modeling 
time and simulating time of ENLM model. It is illustrated that it 
is acceptable for the reliability degrees and simulating time for 
member-1, member-2 and TFRM system, which indicate that the 
developed ENLM is efficient and feasible in the motion reliability 
evaluation of flexible mechanism.
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Table 4
Results of TFRM deformation reliability evaluation.

Components Failure number Reliability Mean, ×10−3 m Standard deviation, ×10−3 m Distribution Computational time, s

Member-1 0 1 14.5 0.677 Normal 0.126
Member-2 49 0.951 16.9 0.408 Normal 0.158
Table 5
Computing time of TFRM reliability analyses.

Methods Number of simulations, times

102 103 104 105

MC method 29.4 s 298 s 2 991 s 30 057 s
QP-RSM 1.67 s 4.62 s 12.93 s 325.91 s
QP-ERSM 0.36 s 0.59 s 1.68 s 125.28 s
GA-GRNN 0.27 s 0.45 s 1.13 s 97.19 s
ENLM 0.14 s 0.28 s 0.49 s 36.08 s

4.5. Method validation

To further support the proposed ENLM, the motion reliability 
analyses of TFRM are conducted with respect to MC method and 
four surrogate models under different simulations (i.e., 102 times, 
103 times, 104 times and 105 times) based on the same compu-
tational conditions and computer environment. The four surrogate 
models are quadratic polynomial (QP)-RSM, QP-ERSM, GA-GRNN 
and ENLM. The QP-RSM and QP-ERSM is based on quadratic poly-
nomials and solved by least square method. The model of the GA-
GRNN is structured by the GA to find the optimal model parame-
ters, and the MPGA is adopted to search for the optimal parameters 
of ENLM model. All analyses are performed by one Intel Pentium 
4 desktop computers with 2.13 GHz CPU and 8 GB RAM. Through 
these analyses, the compared results in computational time and 
reliability degree are listed in Table 5 and Table 6. In Table 6, the 
precision (pr) of TFRM reliability analysis for N simulations is de-
fined as

pr (N) = 1 − |R mod el (N) − RMC (N)|
RMC (N)

(19)

where Rmodel is the reliability degree gained by surrogate model 
methods like QP-RSM, QP-ERSM, GA-GRNN and ENLM; RMC is the 
reliability degree gained by MC method; N is the number of sim-
ulations.

As revealed in Table 5, (i) the surrogate model methods (i.e., 
QP-RSM, QP-ERSM, GA-GRNN and ENLM) took much less compu-
tational time than the MC method. For example, under the 104

simulations, the MC method costed 2991 s while other four surro-
gate models (QP-RSM, QP-ERSM, GA-GRNN and ENLM) only spent 
12.93 s, 1.68 s, 1.13 s and 0.49 s, respectively. The reason is that 
the solution of the differential equations in Eq. (15) based on the 
MC method needs numinous iterations, while the surrogate mod-
els (ERSM and ENLM) did not require in probabilistic simulations. 
In other words, for each simulation, the surrogate model is directly 
simulated without iterations, while the MC method needs a large 
number of iterations in the solving process of the differential equa-
tions; (ii) Relative to QP-RSM, the QP-ERSM took shorter computa-
tional time under the same simulation number. For instance, under 
10 000 simulations, the QP-RSM spent 12.93 s while the QP-ERSM 
costed 1.68 s. This is because ERSM only considers one extremum 
value to establish one surrogate model during time domain as 
the ERSM is modeled, while RSM needs to build many models 
at different time points in the time domain range; (iii) compar-
ing to the QP-ERSM an GA-GRNN, the developed ENLM needs less 
time to complete the same simulations. This is because the MPGA 
adopted many GA to synchronously find the optimal parameters 
in the ENLM model due to fast optimizing operators, relative to 
9

the quadratic polynomial and least square method in searching for 
the optimal parameters of the ERSM and the GA for finding the 
optimal GA-GRNN model parameters; (iv) with the increase of sim-
ulations, the computing time for all methods rise. What’s more, 
the high efficiency of the surrogate model methods (i.e., QP-RSM, 
QP-ERSM, GA-GRNN and ENLM) becomes more obvious with the 
rise of simulation number. For instance, at the same 104 simula-
tion, the time cost of the ENLM (∼0.49 s) is about 1/4063 that of 
MC method (∼2991 s), 1/26 that of QP-RSM (∼12.93 s), 2/7 that 
of QP-ERSM (∼1.68 s) and 2/5 that of GA-GRNN (∼1.13 s), while 
at 102 simulations the time cost of ENLM only 1/210 that of MC 
method, 1/11 that of QP-RSM, 2/5 that of QP-ERSM and 1/2 that 
of GA-GRNN. Therefore, the proposed ENLM with MPGA has high 
computational efficiency and is promising to highly-efficiently im-
plement the motion reliability analysis of flexible mechanism.

In Table 6, it is observed that, (i) the QP-ERSM is more accurate 
than QP-RSM. This is because the QP-ERSM simplified the response 
process as one globally extremum value in ERSM modeling, which 
avoids the local optimization problem, which address the transient 
problem in dynamic reliability analysis and then ensure the effec-
tiveness of samples used to surrogate modeling; (ii) compared to 
the QP-based surrogate models (i.e., QP-RSM and QP-ERSM), the 
GA-GRNN and ENLM hold higher accuracy. The reason is that the 
GRNN model has outstanding advantage (strong mapping ability) 
in describing the nonlinear problem of the true model and this 
strength guarantees the precision of the built GRNN model; (iii) 
the presented ENLM in this study reaches to the precision of over 
0.999. In other words, the precision of the ENLM in the motion re-
liability analysis of TFRM is almost consistent with MC method in 
the calculation accuracy and is higher than other surrogate models 
(QP-RSM, QP-ERSM, GA-GRNN) in simulating accuracy. It is noted 
that the MC method is to directly simulate the differential (mo-
tion) equations of TFRM. It is revealed that in the proposed ENLM 
and the motion reliability evaluation of flexible mechanism, the 
GRNN model efficiently handles the high-nonlinear problem, the 
extremum thought of ERSM contributes to process the transient 
characteristics and local optimization problems, and the adopted 
MPGA accurately finds the parameters of ENLM model. In other 
words, the three techniques (ERSM thought, GRNN model and 
MPGA) together determine the modeling precision of ENLM, which 
ensure the reasonability of TFRM motion reliability analysis.

In conclusion, the proposed ENLM holds high modeling preci-
sion and high simulation efficiency in the motion reliability anal-
ysis of complex mechanism, by adopting the GRNN to perfectly 
handle high nonlinearity, and applying the ERSM to address the 
transients, and utilizing the MPGA to find the optimal model pa-
rameters.

5. Conclusions and future works

The objective of this paper is to develop an enhanced net-
work learning method (ENLM) by integrating the strengths of gen-
eralized regression neural network (GRNN), extremum response 
surface method (ERSM) and multi-population genetic algorithm 
(MPGA), to improve the modeling precision and simulation effi-
ciency of the motion reliability analysis of flexible mechanism. The 
reliability analysis of two-link flexible robot manipulator (TFRM) is 
investigated. Some conclusions are summarized as follows:
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Table 6
Precision of TFRM reliability analyses.

Sample 
number

Reliability degree Pr, %

MC method QP-RSM QP-ERSM GA-GRNN ENLM QP-RSM QP-ERSM GA-GRNN ENLM

102 0.97 0.95 0.98 0.97 0.97 98 99 100 99
103 0.952 0.936 0.961 0.953 0.951 98.3 99.1 99.9 99.9
104 0.9865 0.9496 0.9538 0.9778 0.9866 96.26 96.70 99.12 99.99
105 0.98513 0.95123 0.95687 0.98497 0.98611 96.559 97.131 99.984 99.901
(1) The total reliability degree of TFRM is 0.951 and the reliability 
degrees of member-1 and member-2 are 1 and 0.951, respec-
tively. Meanwhile, the maximum deformations of member-1 
and member-2 follow the normal distribution. It is illustrated 
that the use of ERSM can reasonably process the transient 
problem to implement the motion reliability analysis of flexi-
ble mechanism.

(2) The presented ENLM can effectively process the transient 
problem in the motion reliability analysis of flexible mecha-
nism, by the ERSM simplifying the process of output response 
as a specific global value. The ENLM holds the potential of im-
prove the modeling precision and simulating speed.

(3) The developed ENLM can approximate to the nonlinear prob-
lem and make the built ENLM model accurately approximate 
to the true problem, by finding the optimal model parameters 
with the assist of MPGA.

(4) The advantages of ENLM are more obvious with the increase of 
simulation number, which demonstrates that the ENLM model 
with MPGA has higher computational efficiency and precision 
and better robustness.

(5) The effort of this paper provides a promising way for the mo-
tion reliability analysis and optimal design of flexible mecha-
nism with high modeling precision and simulation efficiency.

In light of this study and the raised questions, two issues 
should be resolved in the coming work. One is that the developed 
ENLM should be extended to engineering fields such as satellite, 
spacecraft, robotics, aeroengine, and so forth, in respect of com-
plex loads, and the other is that the ENLM model should be refined 
in future by more reasonable analysis techniques and optimization 
algorithms such as deep learning algorithms.
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